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1. INTRODUCTION

Let H be a Hilbert space and C/H a centrally symmetric set. For
n # Z+ the Kolmogorov n-widths of C in H are given by

dn(C, H)=inf
Ln

sup
x # C

inf
y # Ln

&x& y&H ,

where the left-most infimum is taken over all n-dimensional linear subspaces
Ln of H (see [1�3]).

Let r # N and 1�p��. Denote by W r
p(T) (T=[0, 2?)) the Sobolev

class of 2?-periodic functions whose (r&1)st derivatives are absolutely
continuous and such that

&x(r)&Lp (T) :=\|T

|x(r)(t)| p dt+
1�p

�1.

The subject considered in this paper goes back to two papers by Kolmogorov.
In [3] Kolmogorov proved the formula

d2n&1(W r
2(T), L2(T))=d2n(W r

2(T), L2(T))=n&r.

In the paper of Kolmogorov et al. [4], which was supplemented by
Maltsev [5], the equality

dn(Bl N
1 , l N

2 )=�N&n
N

, (1)

where

l N
p :={x=(x1 , ..., xN ) # RN } &x& p

lp
N := :

N

k=1

|xk | p= , 1�p<�,

and Bl N
1 is the unit ball in l N

1 was, in fact, proved. The authors of these
papers did not actually state that they had calculated n-widths. (This was
noted by Stechkin [6].) Note that the Sobolev class W r

2(T) is an elliptical
cylinder (it is the orthogonal sum of the one-dimensional space of constants
and a compact ellipsoid) and BlN

1 is a regular octahedron in RN. We consider
generalizations of these two results.

If (X, & }&) is a normed space, then we use the following notation:

d(x, A, X)=inf[&x& y& | y # A] is the distance from x to A in X.

d(C, A, X)=sup[d(x, A, X) | x # C] is the deviation of C from A in X.
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2. n-WIDTHS OF ELLIPSOIDS AND ELLIPTICAL CYLINDERS

An ellipsoid is the image of a ball of a Hilbert space under a linear
continuous mapping. If H and H1 are Hilbert spaces, BH is the unit ball
in H, and T : H � H1 is a linear continuous operator, then T(BH ) is an
ellipsoid which we denote by E(T ). Let L be a finite-dimensional subspace
in H1 . We call the orthogonal sum of an ellipsoid E(T ) and L,

E(T)�L=[ y= y1+ y2 # H1 | y1 # E(T ), y2 # L, y1 = y2],

an elliptical cylinder with base E(T) and generalized axis L.
Denote by N, 0�N�� the dimension of span E(T ). We now calculate

the n-widths of compact ellipsoids and elliptical cylinders with compact base.
Let T be a compact operator. By the Hilbert�Schmidt theorem (see, for

example, [7, p. 231]) for the self-adjoint compact operator T $T (T $ is the
adjoint operator to T ) there exists an orthonormal system of eigenvectors
[ek]k�1 with corresponding eigenvalues s2

k , sk a 0, sk {0, such that each
element x # H has the unique representation

x= :
k�1

(x, ek) ek+!, (2)

where ! # Ker T. (The numbers sk are called the s-numbers of T.)
The following theorem has been proved by many authors (see Section 5).

Theorem 1 (n-Widths of Compact Ellipsoids). Let H and H1 be Hilbert
spaces, let T : H � H1 be a compact operator, let C=E(T)�Lm(dim E(T )
=N, dim Lm=m), and let n # Z+ . Then

�, n<m,

dn(C, H1 )={sn+1&m , m�n�N+m,

0, n>N+m.

The linear, Gel 'fand, and Bernstein n-widths satisfy the same equalities.

Proof. We prove the theorem for the Kolmogorov n-width. The
statement of the theorem for the cases where n<m and n>N+m may be
easily checked. Let n<N and for simplicity assume m=0 (the general case
easily follows from this). The upper bound will be proved by the Fourier
method. Let y # E(T); that is, y=Tx, &x&H�1. By (2) y=�k�1 (x, ek) Tek

and &x&2
H=�k�1 |(x, ek) | 2+&!&2

H�1. Let us approximate y by Sn y=
�n

k=1 (x, ek) Tek . Then taking into account the orthogonality of the
system [Tek], we have

& y&Sn y&2
H1

= :
k�n+1

s2
k |(x, ek) | 2�s2

n+1 :
k�n+1

|(x, ek) |2�s2
n+1 .
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The upper bound is proved. The lower bound will be proved by the
method of embedded balls. We consider the (n+1)-dimensional subspace
L� =span[Tek]n+1

k=1 of H1 and show that the set sn+1 BH1 & L� lies in E(T ).
Let y # sn+1BH1 & L� . Then y=�n+1

k=1 ykTek and & y&2
H1

=�n+1
k=1 y2

ks2
k�s2

n+1 .
If x=�n+1

k=1 ykek , then it is clear that y=Tx and since

&x&2
H= :

n+1

k=1

y2
k= :

n+1

k=1

y2
ks2

k

s2
k

�
1

sn+1

:
n+1

k=1

y2
k s2

k�1,

we obtain that sn+1BH1 & L� /E(T). By the theorem on n-widths of a ball
(see, for example, [2, p. 12]), which is trivial for a Hilbert space, we have
dn(E(T), H1)�dn(sn+1 BH1 & L� , H1)=sn+1 . K

3. n-WIDTHS OF GENERALIZED OCTAHEDRA

In finite-dimensional geometry an octahedron is the convex hull of a
simplex with a vertex at the origin and a simplex symmetric to it. For
octahedra which are so defined there is no known general method for
calculating the n-widths. But it is possible to calculate n-widths for octa-
hedra in RN which are the convex hulls of the vectors [\fk], 1�k�N,
obtained from one vector K=(k1 , ..., kN) by cyclical permutation. Such
octahedra may be considered Sobolev classes W K

1 (ZN) consisting of functions
y=( y1 , ..., yN) on the cyclical group of order N defined by a convolution

WK
1 (ZN)=[ y # RN | y=K V x, &x&l 1

N�1],

where x=(x1 , ..., xN), yi=�N
j=1 ki+ j&1x j , and the summation is carried

out modulo N. The regular octahedra can be defined in this same way as
a convolution class on the cyclical group ZN with the kernel K equal to 1
at the zero of the group and 0 at all other elements.

This gives us the possibility of considering generalized Sobolev classes of
so-called sourcewise represented functions which are similar to generalized
octahedra.

First we recall some definitions (details may be found in [8]). Let G be
a compact group with Haar measure + (+(G)=1). Let [T :]: # A (where
A is at most a countable set) be a complete system of finite-dimensional
nonreducible unitary representations of G. For each : # A we denote by
t:

ij ( } ), i, j=1, ..., n:=dim T :, the matrix elements of the representation T :

in some orthonormal basis. These functions are continuous and the func-
tions [- n: t:

ij ( } )], : # A, i, j=1, ..., n: , form an orthonormal basis in
L2(G). Note that if G is an Abelian group, then all representations T :,
: # A, are one-dimensional. For each : # A and 1� j�n: set H :

j =
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span[t:
ij( } ) | i=1, ..., n:]. The space L2(G) is represented as the direct sum

of those spaces which are left-translation-invariant.
A set X is called a homogeneous G-space if the group G acts transitively

on X��in other words, if there exists a map G_X � X, (g, x) � gx, such
that (g2 g1) x= g2(g1x), ex=x (e is the unity element of G) for all
g1 , g2 # G and x # X, and in addition for every x1 , x2 # X there exists a
g # G for which x2= gx1 . It is obvious that any group G is a homogeneous
G-space with respect to the operation (g, g0) � gg0 .

Let x0 # X, let H=[g # G | gx0=x0], and let G�H be the set of (left)
residue classes of group G on the subgroup H. Consider the map p: X �
G�H which associates x with the residue class gH such that gx0=x. The
map p is a one-to-one mapping. Thus any function on X may be considered
as a function on G which is constant on the residue classes. By virtue of
this fact, for any topological homogeneous G-space X with compact group
G and measure & invariant with respect to G (that is, &(A)=&(gA) for any
measurable subset A/X and g # G), the structure of L2(X) is analogous to
the structure of L2(G). More precisely L2(X ) is a direct sum of at most an
enumerable set of finite-dimensional subspaces Hk invariant with respect to
G consisting of continuous functions.

We will need the following auxiliary result.

Lemma 1. Let X be a topological homogeneous G-space with compact
group G and probability measure invariant with respect to G. If [ek( } )]n

k=1

is an orthonormal system of continuous functions from L2(X) such that Ln=
span[ek( } )]n

k=1 is invariant with respect to G, then

:
n

k=1

|ek( } )|2#n.

Proof. For x # X consider the function

!x( } )= :
n

k=1

ek(x) ek( } ).

If y( } ) # Ln then it is clear that

( y( } ), !x( } ))= y(x). (3)

Let x1 , x2 # X and g # G such that

x2= gx1 . (4)
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Using the invariance of the measure, (3), and (4), for every y( } ) # Ln we have

( y( } ), !x2
(g } )) =( y(g&1 } ), !x2

( } )) = y(g&1x2)= y(x1)=( y( } ), !x1
( } )) .

Thus !x2
(g } )=!x1

( } ). Substituting here x1 we obtain that

:
n

k=1

|ek(x1)|2= :
n

k=1

|ek(x2)| 2=C.

Since the given measure is a probability measure and the system [ek( } )]n
k=1

is orthonormal we have

C=|
X

:
n

k=1

|ek(x)|2 d+(x)=n. K

Let X be a topological homogeneous G-space with compact group G and
probability measure invariant with respect to G. As was mentioned, in this
case L2(X ) may be represented in the form

L2(X )= :
k�1

Hk , dim Hk=nk<�,

where the Hk are shift-invariant spaces of continuous functions. Consider
the classes of functions represented as convolutions with kernels

K(t, {)= :
k�1

:
nk

j=1

#kjekj (t) ekj ({), (5)

where the [ekj ( } )]nk
j=1

is an orthonormal basis for Hk of continuous func-
tions and #kj # C are such that

:
k�1

nk max
1� j�nk

|#kj |
2<�. (6)

The function K( } , } ) induces the operator

Ax(t)=|
X

K(t, {) x({) d+({).

We show that A is a continuous operator from L1(X ) into L2(X ). Indeed,
by the Cauchy�Bunyakovsky inequality for all t # X

|Ax(t)|�|
X

( |K(t, {)|2 |x({)| )1�2 |x({)| 1�2 d+({)

�\|X
|K(t, {)|2 |x({)| d+({)+

1�2

&x( } )&1�2
L1 (X ) .
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Squaring this inequality, integrating it, and then changing the order of
integration, we obtain

&Ax( } )&2
L2 (X )�&x( } )&2

L1 (X ) sup
t # X

|
X

|K(t, {)|2 d+({)

=&x( } )&2
L1 (X ) sup

t # X
&K(t, } )&2

L2 (X ) .

According to the Parseval equality for all t # X

&K(t, } )&2
L2(X )= :

k�1

:
nk

j=1

|#kj |
2 |ekj (t)|2.

By Lemma 1 �nk
j=1

|ekj (t)|2=nk . In view of (6) we have that &K(t, } )&L2(X)�C.
Therefore A: L1(X ) � L2(X ) is a continuous operator.

Set

WK
1 (X )=[ y( } ) # L2(X ) | y( } )=Ax( } ), &x( } )&L1(X)�1].

Theorem 2. Let X be a topological homogeneous G-space with compact
group G and probability measure invariant with respect to G. Let K: X_X � C
be a function of the form (5), where the #kj satisfy the additional condition
|#kj |=*k , 1� j�nk , k�1. Assume that [*k]k�1 are in decreasing order. Then
for all n=n1+ } } } +ns

dn(W K
1 (X ), L2(X))=\ :

k�s+1

*2
k nk+

1�2

.

Proof. Since W K
1 (X )=cl co[K( } , {)]{ # X it is sufficient to prove the

statement of the theorem for the set [K( } , {)]{ # X .

The Upper Bound. We use the Fourier method to project our class onto
the subspace Ln=span[ekj ( } ) | 1� j�nk , 1�k�s]. Then for any { # X
using the Parseval equality, the hypothesis of the theorem, and Lemma 1,
we have

d 2(K( } , {), Ln , L2(X ))= :
k�s+1

*2
knk .

Hence the required estimate follows.
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The Lower Bound. We use the method of averaging. Let Ln be an
n-dimensional subspace of L2(X ), and [ fm]n

m=1 an orthonormal basis
of Ln . Then for all { # X

d 2(K( } , {), Ln , L2(X ))=&K( } , {)&2
L2(X )& :

n

m=1
} |X

K(t, {) fm(t) d+(t)}
2

. (7)

In view of the hypothesis of the theorem and by Lemma 1 we have

&K( } , {)&2
L2(X )= :

k�1

:
nk

j=1

|#kj |
2 |ekj (t)| 2

= :
k�1

*2
k :

nk

j=1

|ekj (t)| 2= :
k�1

*2
knk . (8)

Furthermore,

} |X
K(t, {) fm(t) d+(t) }

2

= } :
k�1

:
nk

j=1

#kj ekj ({) |
X

ekj (t) fm(t) d+(t) }
2

.

Substituting it and (8) into (7), integrating the obtained expression, and
using the Parseval equality with the hypothesis of the theorem, we obtain

|
X

d 2(K( } , {), Ln , L2(X)) d+({)

= :
k�1

*2
k nk& :

n

m=1

:
k�1

:
nk

j=1

|#kj |
2 } |X

ekj (t) fm(t) d+(t) }
2

= :
k�1

*2
k nk& :

n

m=1

:
k�1

*2
k :

nk

j=1 } |X
ekj (t) fm(t) d+(t)}

2

. (9)

For k�1 set

ĉk= :
n

m=1

:
nk

j=1
}|X

ekj (t) fm(t) d+(t) }
2

.

It is easy to check that 0�ĉk�nk and �k�1 ĉk=n1+ } } } +ns . Consider
the problem of linear programming

:
k�1

*2
kck � max, 0�ck�nk , :

k�1

ck=n1+ } } } +ns .
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The solution of this problem is evidently

ck=nk , 1�k�s, ck=0, k�s+1

(we recall that *1�*2� } } } ). Thus we obtain the lower bound for the
left-hand side of (9)

ck=nk , 1�k�s, ck=0, k�s+1.

Standard arguments now lead to the required estimate. K

4. COROLLARIES FROM THE GENERAL THEOREMS

We begin with n-widths of convolution classes of functions defined on
a compact group. Let G be a compact group and let K( } ) # L2(G). The
operator of convolution is defined as

Tx(g)=|
G

K(gs&1) x(s) d+(s). (10)

It is a compact operator from L2(G) into L2(G). Moreover, it follows from
the Minkowski inequality that (10) is a continuous operator from L1(G)
into L2(G). Set

WK
p (G)=[ y( } ) # L2(G) | y( } )=Tx( } ), &x( } )&Lp (G)�1], p=1, 2.

Theorem 3. Let G be a compact group and let K( } ) # L2(G) be such that
its Fourier coefficients c:

ij when expanded in the orthonormal basis e:
ij ( } )=

- n: t:
ij ( } ), : # A, i, j=1, ..., n: , satisfy the condition: for any : # A the

matrix C:=(c:
ij)

n:
i, j=1

has the form *: U: , where *: # C and U: is a unitary
matrix. Assume that [*k�- nk ]k�1 is the sequence [*: �- n: ]: # A ordered in
decreasing order. Then for all m�1 (n0=0)

(1) for any n such that n2
1+ } } } +n2

m&1<n�n2
1+ } } } +n2

m

dn(W K
2 (G), L2(G))=

|*m |

- nm

,

(2) for any n=n2
1+ } } } +n2

m&1+nm sm , where 1�sm�nm ,

dn(W K
1 (G), L2(G))=\ |*m | 2 (nm&sm)+ :

k�m+1

|*k |2 nk+
1�2

.
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Proof. (1) Using properties of the matrix elements

t:
ij(g1g2)= :

n:

k=1

t:
ik(g1) t:

kj (g2), t:
ij(g)=t:

ji(g&1),

we have

K(gs&1)= :
: # A

:
n:

i, j=1

c:
ije

:
ij(gs&1)= :

: # A

:
n:

i, j=1

1

- n:

c:
ij :

n:

k=1

e:
ik(g) e:

jk(s).

(11)

It is easy to verify that if x=(x1 , ..., xn:
) is an eigenvector of C$: C: for the

eigenvalue *, then for all 1�k�n: the functions �n:
j=1

xje:
jk( } ) are

eigenfunctions for T $T with eigenvalue *�- n: . Consequently, sj are the
s-numbers of T $T. It remains to use Theorem 1.

(2) By (11) we have

K(gs&1)= :
: # A

1

- n:

:
n:

k, i=1

e:
ik(g) :

n:

j=1

c:
ij e

:
jk(s).

Set

e:
1k(g)

E :
k( g) :=\ b + .

e:
n:k(g)

Then

K(gs&1)= :
: # A

1

- n:

:
n:

k=1

(E :
k(g), C� :E :

k(s)):

= :
: # A

*:

- n:

:
n:

k=1

(E :
k(g), U� :E :

k(s)): ,

where

(a, b): := :
n:

i=1

aib� i .

There exists a unitary matrix V: such that

V:U: V:*=\
#:

1

0
. . .

0

#:
n:

+=: 1: ,
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where |#:
j |=1, j=1, ..., n: . Set

f :
1k(g)

F :
k( g)=V� :E :

k( g)=: \ b + .

f :
n:k(g)

Then E :
k(g)=V� :*F :

k(g), f :
ik(g) is an orthonormal basis, and

K(gs&1)= :
: # A

*:

- n:

:
n:

k=1

(V� :*F :
k(g), U� : V� :*F :

k(s)):

= :
: # A

*:

- n:

:
n:

k=1

(F :
k(g), V� : U� :V� :*F :

k(s)):

= :
: # A

*:

- n:

:
n:

k=1

(F :
k(g), 1� :F :

k(s)):

= :
: # A

*:

- n:

:
n:

k, j=1

#:
j f :

jk(g) f :
jk(s).

Using Theorem 2 we obtain the desired equality. K

Corollary 1. Let G be a compact Abelian group, let K( } ) # L2(G), and
let cj , j�1, be Fourier coefficients of K in an orthonormal basis formed by
characters of the group. Assume that the cj are arranged in decreasing order.
Then for all n # Z+

dn(W K
2 (G), L2(G))=|cn+1 |,

dn(W K
1 (G), L2(G))=\ :

j�n+1

|cj |
2+

1�2

.

Corollary 2. For K=(k1 , ..., kN) set

cj= :
N

m=1

km e&2?i( j&1) m�N.

Assume that cj are arranged in decreasing order. Then for all n # Z+

dn(W K
2 (ZN), L2(ZN))=|cn+1 |,

dn(W K
1 (ZN), L2(ZN))=\ 1

N
:

j�n+1

|cj |
2+

1�2

.
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If K=(1, 0, ..., 0), then from the last equality we obtain (1).
Let

Sd={x=(x1 , ..., xd+1) # Rd+1 } :
d+1

j=1

x2
j =1=

be the unit sphere. It is known (see [9]) that L2(Sd )=��
k=0 Hk , where

dim Hk=nk=\d+k
k +&\d+k&1

k&2 +
(Hk is the set of spherical harmonics of order k). Let [Y k

j ]nk
j=1

be an
orthonormal basis of Hk . For the Laplace operator 2 and any x( }) # Hk the
equality

2x( } )=&*k x( } )

holds where *k=k(k+d&1). For :>0 the operator (&2):�2 is defined by

(&2):�2 x( })= :
�

k=1

*:�2
k :

nk

j=1

xkj Y k
j ( } ),

where x( }) # L2(Sd ) and x( } )=��
k=0 �nk

j=1
xkjY k

j ( } ).
Set

W:
2(Sd )=[x( }) # L2(Sd ) | &(&2):�2 x( } )&L2 (S d )�1].

It is easy to check that this class can be represented in the form

W :
2(S

d )=[x( } ) # L2(S
d ) | x( } )=c+Ty( } ), c # R, &y( } )&L2(Sd)�1, y( } )=1],

where for y( } )=��
k=1 �nk

j=1
ykjY k

j ( } )

Ty( } )= :
�

k=1

:
nk

j=1

*&:�2
k ykjY k

j ( } ).

Corollary 3. Let n0+ } } } +nk&1�n<n0+ } } } +nk . Then

dn(W :
2(Sd ), L2(Sd ))=*&:�2

k .

The class W :
2(Sd ) for d=1 and :=r # Z+ coincides with the Sobolev

class

W r
2(T)=[x( } ) # L2(T) | x (r&1)( } ) abs. cont., &x(r)( } )&L2(T)�1].

In this case *k=k2, n0=1, nk=2, k�1. Thus we obtain
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Corollary 4. For all n # Z+

d2n&1(W r
2(T), L2(T))=d2n(W r

2(T), L2(T))=
1
nr .

One does not obtain results similar to those obtained in Corollary 3 and
4 for the classes W :

1(Sd ) and W r
1(T). The reason for this is the additional

condition y( } )=1 which does not permit us to apply Theorem 2. Some
estimates of dn(W r

1(T), L2(T)) may be found in [2, p. 101].

5. AVERAGE WIDTHS

In this section we calculate exact values of average Kolmogorov widths
for some classes of functions defined on Rd and Zd in the L2 metric. We
begin with the definition of the average dimension of a subspace. Let
G=Rd or Zd and +G be the Lebesgue measure on G if G=Rd, and discrete
measure if G=Zd. Let A(G) be the set of positive numbers if G=Rd and
the set of natural numbers if G=Zd. Assume that A is a subset of Lp(G)
(1�p��) and : # A(G). Denote by A: the restriction of A to the set

g:=[t=(t1 , ..., td) # G | |t j |�:, j=1, ..., d].

Let L be a subspace of Lp(G). For every =>0 and : # A(G) consider the
value

K=(:, L, Lp(G))=min[n # Z+ | dn((L & BLp(G)): , Lp(g:))<=],

where BLp(G) is the unit ball of Lp(G). It is clear that K=(:, L, Lp(G)) is
the minimal dimension of a subspace of Lp(g:) which approximates the
set (L & BLp(G)): to within =. It is easy to check that for every =>0 the
function : � K=(:, L, Lp(G)) does not decrease, and obviously for every
:>0 the function = � K=(:, L, Lp(G)) does not increase.

The average dimension of L in Lp(G) is defined as

dim(L, Lp(G))= lim
= � 0

lim inf
: � �

K=(:, L, Lp(G))
+G(g:)

.

It is clear that dim(L, Lp(Zd ))�1.
We shall formulate here one result about average dimension of func-

tional spaces which we later need. Let G* be Rd for G=Rd and Td (a
d-dimensional torus) for G=Zd. Let +G* be the Lebesgue measure on G*
divided by (2?)d. (The last condition is connected with the fact that +G is
the natural Haar measure on G as on a locally compact Abelian group and
+G* is just the Haar measure associated with it on the dual group G*.)
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Let A be a subset of G* and 1�p��. Set

BA, p(G)=[x( } ) # Lp(G) | supp x̂( } )/A],

where supp x̂( } ) is the support of Fourier transform of x( } ) (x( } ) is con-
sidered as a distribution). It is clear that BA, p(G) is a subspace of Lp(G).

Recall that a set A/G* is called Jordan measurable if its characteristic
function is integrable in the sense of Riemann. The following two theorems
(Theorems 4 and 5) were proved in [10, 11] for G=Rd. In the general case
these theorems may be proved in much the same way.

Theorem 4 (About Average Dimension). Let G=Rd or Zd, let A be a
Jordan measurable subset of G* with finite measure, and let 1�p��. Then

dim(BA, p(G), Lp(G))=+G*(A).

The notion of average dimension leads at once to the corresponding
analogue of Kolmogorov n-width. Let C be a centrally symmetric subset of
Lp(G) and &�0. The Kolmogorov average &-width of C in Lp(G) is defined
as

d� &(C, Lp(G))=inf
L

sup
x( } ) # C

inf
y( } ) # L

&x( } )& y( } )&Lp (G) ,

where the first infimum is taken over all subspaces L of Lp(G) such that
dim(L, Lp(G))�&. Any subspace for which this infimum is attained we call
an extremal subspace for d� &(C, Lp(G)).

The following analogue of the theorem holds about widths of a ball for
average widths.

Theorem 5 (About Widths of a Ball). Let A/G* be a Jordan measurable
set, let &>0, and let +G*(A)>&. Then

d� &(BA, p(G) & BLp(G), Lp(G))=1.

We calculate the exact value of the average width in L2 for the set C
which is a convolution class of functions defined on G. If K( } ) # L2(G), then
the operator of convolution with this kernel x( } ) � K V x( } ) is obviously a
linear continuous operator from L2(G) into L2(G). Set

W K
2 (G)=[ y( } ) # L2(G) | y( } )=(K V x)( } ), &x( } )&L2

(G)�1].

Denote by ẑ( } ) the Fourier transform of the function z( } ) # L2(G).
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Theorem 6. Let K( } ) # L1(G) & L2(G), let &>0 if G=Rd, and let
0<&<1 if G=Zd. Then

d� &(W K
2 (G), L2(G))=K� *(&),

where K� *( } ) is the non-decreasing permutation of K� ( } ). Moreover, the space
BA(&), 2(G), where A(&)=[{ # G* | |K� ({)|>K� *(&)], is an extremal space for
d� &(W K

2 (G), L2(G)).

Proof: The Lower Bound. We use the method of ``embedded balls.''
For every #>0 consider the set A(#)=[{ # G* |K� ({)|>#]. Since K( } ) #
L1(G) the function K� ( } ) is continuous and K� ({) � 0 as |{| � � if G=Rd.
Therefore the set A(#) is Jordan measurable. We prove that

BA(#), 2(G) & #BL2(G)/W K
2 (G). (12)

Indeed, let y( } ) belong to the left-hand side of (12). Assume that x( } ) #
L2(G) is defined by the condition: x̂({)=0 almost everywhere if { � A(#)
and x̂({)=K� &1({) ŷ({) almost everywhere if { # A(#). Thus y( } )=
(K V x)( } ) and we have to show that &x( } )&L2(G)�1. By the Plancherel
theorem

&x( } )&2
L2(G )=|

G
|K� &1({) ŷ({)| 2 d{=|

A(#)
|K� &1({) ŷ({)|2 d{

�#&2 |
A(#)

| ŷ({)|2 d{�#&2& y( } )&2
L2 (G )�1;

that is, y( } ) # W K
2 (G).

Now #>0 is such that +G*(A(#))>&. By Theorem 4

dim(BA(#), 2(G), L2(G))=+G*(A(#))>&.

Then by Theorem 5 (taking into account the obvious property of homogeneity
of these widths) we obtain

d� &(BA(#), 2(G) & #BL2(G), L2(G))=#.

From this and (12), using the monotonicity of widths it follows that

d� &(W K
2 (G), L2(G))>#.

Passing to the supremum in this inequality over all #>0 for which
+G*(A(#))>& (in view of the continuity of K� ( } ) this is equivalent to
passage to the supremum over all #>0 for which +G*(A(#))�&) we obtain
the required lower bound.
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The Upper Bound. This is based on the approximation of W K
2 (G) by the

Fourier method. Let #=#(&) be such that +G*(A(#))=& (it is clear that in
this case #=K� *(&)). By Theorem 4 dim(BA(#), 2(G), L2(G))=&. With every
y( } )=(K V x)( } ) # W K

2 (G) associate the function '( } ) # BA(#), 2(G) such that
'̂( } )=/A(#)( } ) ŷ( } ), where /A(#)( } ) is the characteristic function of the
set A(#). By using the Plancherel theorem and the definition of W K

2 (G) we
estimate &y( } )&'( } )&L2(G) and obtain the required upper bound. K

The next result is the analogue of (1) for average widths.

Theorem 7. Let 0<&<1. Then

d� &(Bl1(Z
d ), l2(Zd ))=- 1&&.

Proof. The arguments do not depend on the dimension d so for
simplicity we consider the case d=1.

The Lower Bound. Let L be a subspace of l2(Z), let dim(L, l2(Z))�&,
and let =>0. Assume that [Nk] is a subsequence of natural numbers such
that

lim inf
N � �

K=(N, L, l2(Z))
2N+1

= lim
k � �

K=(Nk , L, l2(Z))
2Nk+1

. (13)

By the definition of average dimension, for every k there exists a subspace
Mk /l 2Nk+1

2
such that

d((L & Bl2(Z))k , Mk , l 2Nk+1
2

)<=, (14)

dim Mk�K=(Nk , L, l2(Z)). (15)

Let x # Bl 2Nk+1
1

. Extending x by zero to Z we obtain x # Bl1(Z) and
consequently x # Bl2(Z). Let y # L and z # Mk be such that

& y&z&l 2
2Nk+1=d( y, Mk , l 2Nk+1

2
). (16)

Then using the triangle inequality, (16), (14), and again the triangle inequality,
we have

&x& y&l2(Z)�&x& y&l
2
2N k+1�&x&z&l

2
2N k+1&&y&z&l

2
2N k+1

�d(x, Mk , l2Nk+1
2 )&d( y, Mk , l 2Nk+1

2 )

�d(x, Mk , l 2Nk+1
2

)&= & y&l2 (Z)

�d(x, Mk , l 2Nk+1
2

)&= &x& y& l2 (Z)&= &x&l2(Z) .
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Consequently,

(1+=) &x& y&l2 (Z)�d(x, Mk , l 2Nk+1
2

)&=.

Hence,

(1+=) d(Bl1(Z), L, l2(Z))�d(Bl2Nk+1
1 , Mk , l 2Nk+1

2 )&=. (17)

From (13) (taking into account (15)) it follows that for every 0<$<1&&
there exists k0 such that for all k�k0

dim Mk�K=(Nk , L, l2(Z))�(&+$)(2Nk+1).

Put N(k)=2Nk+1 and n(k)=[(&+$)(2Nk+1)]. Then dim Mk�n(k)
<N(k). Taking into account these inequalities, (17), and (1), we have

(1+=) d(Bl1(Z), L, l2(Z)�dn(k)(Bl N(k)
1 , l N(k)

2 )&=

=�1&
n(k)
N(k)

&=�- 1&(&+$)&=.

In view of the arbitrariness of =, $, and L we obtain the required lower
bound.

The Upper Bound. Let =>0 and let the numbers n, N # N be chosen so
that n<N and (n�N)�&�(n�N)+=. Denote by Ln, N a subspace of l N

2 with
dimension at most n which is extremal for dn(Bl N

1 , l N
2 ). We consider this

subspace as a subspace of functions on Z with support on [0, 1, ..., N&1].
Let ei ( } ), i=1, ..., N, be a basis for Ln, N . If k # Z, then the functions
ei ( }+kN), i=1, ..., N, form a basis in the space of all functions from Ln, N

shifted by kN. Denote by L the set of functions y( } ) defined on Z which
have the form y( } )=�k # Z �n

i=1 xki e( }+kN), where �k # Z �n
i=1 x2

ki<�.
It is clear that L is a subspace of l2(Z).

We show that dim(L, l2(Z))�&. Indeed, denote by Lm the restriction of
L to [&mN, ..., mN]. It is easy to see that dim Lm�2mn+1 and therefore

dim(L, l2(Z))�lim inf
m � �

2mn+1
2mN+1

=
n
N

�&.

Denote by Mk the restriction of L to 2k=[kN, ..., (k+1) N&1].
Now let x # Bl1(Z) and let xk be the restriction of x to 2k . Since xk #

&xk&l 1
N BlN

1 and Mk=Ln, N (if Ln, N is considered as a set of functions
defined on 2k), there exists yk # Mk for which

&xk& yk& l2
N�- 1&(n�N) &xk& l1

N . (18)
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Let y # L be a function such that the restriction of y to 2k equals yk . Then
using (18) and the mean inequality we have

&x&y&l2 (Z)=\ :
k # Z

&xk&yk&2
l 2

N+
1�2

��1&
n
N \ :

k # Z

&xk &2
l1

N+
1�2

��1&
n
N

:
k # Z

&xk& l1
N=�1&

n
N

&x& l1(Z)

��1&
n
N

�- 1&&+=.

In view of the arbitrariness of = we obtain the required estimate. K

We note here one general fact which in particular enables us to obtain
at once a series of extremal spaces for the widths dn(Bl N

1 , l N
2 ) and

d� &(Bl1(Z
d ), l2(Zd )).

Let G be a locally compact Abelian group (LCAG), let G* be the dual
group to G (that is, the group of all continuous characters on G), and let
ch(g, g*) be the value of g* # G* at the element g # G. We define by +G

(+G*) the Haar measure on G (G*).
For every x( } ) # L1(G) the function x̂( } ) defined on G* which is given by

the formula

x̂(g*)=|
G

x(g) ch(&g, g*) d+G (19)

is called the Fourier transform of x( } ). By (19) it follows that x̂( } ) is a
continuous function and

&x̂( } )&C(G*)�&x( } )&L1(G) . (20)

The Fourier transform can be extended up to an isometric operator from
L2(G) onto L2(G*) (this extension we define by the same symbol x̂( } )).
Thus we have the Parseval equality

&x( } )&L2 (G)=&x̂( } )&L2 (G*) . (21)

If G is a discrete group, then the dual group G* is compact and we shall
usually assume that +G*(G*)=1.

Let A be a nonempty subset of G* and p=1 or 2. Set

BA, p(G)=[x( } ) # Lp(G) | supp x̂( } )/A],

where supp x̂( } ) is the support of x̂( } ). It is clear that BA, p(G) is a subspace
of Lp(G).
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Proposition 1. Let G be a discrete LCAG and let A be a measurable
subset of G*. Then L1(G) is embedded in L2(G) and

d(BL1(G), BA, 2(G), L2(G))�- 1&+G*(A).

Proof. Let x( } ) # BL1(G) and let the function y( } ) # L2(G) be such that
ŷ( } )=/A( } ) x̂( } ) (/A( } ) is the characteristic function of A). It is clear that
y( } ) # BA, 2(G). Using (21) and (20), we have

&x( } )&y( } )&2
L2 (G )=|

G*"A
|x̂( g*)|2 d+G*�&x̂( } )&2

C(G*) |
G*"A

d+G*

�&x( } )&2
L1 (G ) (1&+G*(A))�1&+G*(A).

If we take here x( } ) # L1(G ) and y( } )=0, then we obtain that &x( } )&L2(G)�
&x( } )&L1(G) . This means that L1(G) is continuously embedded in L2(G). K

We apply this result to the problems mentioned above.

1. The space lN
p , 1�p��, can be considered as Lp(G), where G=

ZN=[0, 1, ..., N&1] is a finite discrete Abelian group with the operation
of addition modulo N. Characters of this group are the functions k �
exp(2?kl�N), k # ZN , where 0�l�N&1. Therefore we can identify the
dual group Z*N with ZN . Let n<N and A=[l j1

, ..., ljn
]/Z*N . It is clear that

+Z*N
(A)=n�N. Consider the space Ln=span[exp(2?ilj1

} �N), ..., exp(2?iljn
} �N)],

dim Ln=n. From Proposition 1 and (1) it follows that Ln is an extremal
subspace for dn(Bl N

1 , l N
2 ).

2. Let A/Td be Jordan measurable, +T* (A)=&, 0<&<1. Consider
the space L&=[x( } ) # l2(Z

d ) | supp x̂( } )/A]. By Theorem 4 we have
dim(L& , l2(Zd ))=&. Now from Proposition 1 and Theorem 4 it follows that
L& is an extremal subspace for d� &(Bl1(Zd ), l2(Zd )).

6. COMMENTS

Various statements which are equivalent to Theorem 1 were proved by
many authors (see [2, 12�15]). Of course this result was known to Kolmogorov
who considered in [3] only particular cases of elliptical cylinders.

In a finite-dimensional space n-widths of regular octahedra were in fact
obtained in two papers, [4] (the upper bound) and [5] (the lower bound).
It is interesting to note that Kolmogorov in 1948 did not take into con-
sideration that in these papers dn(BlN

1 , lN
2 ) were calculated. This fact was

noted by Stechkin [6], who used it to find asymptotic values of n-widths
for functional classes.
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There is one more type of octahedra for which it is possible to calculate
exact values of widths. They are octahedra with different axes

BlN
1 (a) :={x # RN } :

N

k=1

|xk |
ak

�1= , a1� } } } �aN .

For the dual case Smolyak [16] found the exact values of the linear (*n)
and Gel'fand (d n) n-widths,

*n(Bl N
2 (a), l N

�)=d n(Bl N
2 (a), l N

�)=max
m>n �

m&n
�m

k=1 a&2
k

.

For the Kolmogorov n-width dn(Bl1(a), l2) the exact result was obtained by
Sofman [17, 18] (see also [19]).

In the continuous case estimates for the n-widths of generalized octahedra
and even more general sets (images of compacts under continuous transforma-
tion in the Hilbert space) can be obtained using results such as a theorem of
Ismagilov [20] which is based on the method of averages (we demonstrated
this method in the proof of Theorem 2). Ismagilov cited Obukhov [21] as
a predecessor in using the method of averages. Several statements of a
similar type which are used to calculate exact values of n-widths for classes
of analytic functions can be found in [22�24]. In those papers the dual
situation is considered and the exact values of linear, Gel'fand, and
Bernstein widths of W K

2 (X ) in C(X ) are found. In the dual case using the
Hilbert space structure it is possible to calculate the exact values of
n-widths for W :

2(Sd ) and W r
2(T).

The concept of average dimension takes its beginnings from the defini-
tion of ``average entropy'' for stochastic signals with bounded spectrum,
which was given by Shannon [25]. Kolmogorov further modified this
definition for determined functions. Then Tikhomirov [26] defined the
notion of average dimension replacing entropy by Kolmogorov n-widths.
The definition of the average dimension used in this paper is a modification
of Tikhomirov's definition. The notion of the Kolmogorov average widths
is due to Magaril-Il'yaev.
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